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Abstract We consider a setting where a coalition of individuals chooses one or
several alternatives from each set in a collection of choice sets. We examine the com-
putational complexity of Pareto rationalizability. Pareto rationalizability requires that
we can endow each individual in the coalition with a preference relation such that the
observed choices are Pareto efficient. We differentiate between the situation where the
choice function is considered to select all Pareto optimal alternatives from a choice set
and the situation where it only contains one or several Pareto optimal alternatives. In
the former case we find that Pareto rationalizability is an NP-complete problem. For the
latter case we demonstrate that, if we have no additional information on the individual
preference relations, then all choice behavior is Pareto rationalizable. However, if we
have such additional information, then Pareto rationalizability is again NP-complete.
Our results are valid for any coalition of size greater or equal than two.

Keywords Pareto efficiency · Computational complexity · NP-complete.

JEL Classification C60 · C63 · D70

1 Motivation

We determine the computational complexity of validating whether a choice function
is consistent with Pareto optimal choice behavior. In concreto, we ask whether there
exists an efficient algorithm that can verify whether a given data set on observed
choices from a collection of choice sets is consistent with the choices from a coalition
of individuals that selects only Pareto optimal alternatives? In general we find that
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Pareto optimal choice behavior has either no testable restrictions or that its testable
implications are very difficult to verify. For the latter case, this is established by
showing that the problem is NP-complete. Our findings bear important empirical
implications. The fact that the verification of Pareto consistent choice behavior is
either trivial or NP-complete demonstrates that empirical refutation or acceptance
of Pareto optimal choice behavior might be extremely difficult. In fact, all known
algorithms to solve NP-complete problems suffer from exponential worst-case time
complexity.

Consider an individual who selects from every set in a collection of choice sets
one or several alternatives. These choices are rationalizable if it is possible to endow
this individual with a nicely behaved (i.e. transitive and complete) preference relation
over the set of alternatives such that for every choice set, the set of chosen alternatives
coincides with the set of all maximal elements according to this preference relation. In
this single person setting rationalizability is easily verified. In a seminal contribution
to the literature Richter (1966) demonstrates that a choice function is ‘individually’
rationalizable if it satisfies the congruence condition. This condition requires that the
transitive part of the revealed preference relation, which can be computed efficiently
using, for example, Warshall’s algorithm (Warshall 1962), does not conflict with the
strict revealed preference relation.

Now, consider a setting where multiple individuals in a coalition jointly choose one
or several alternatives from every set in a collection of choice sets. It is well known
that in a multi-person setting the observed choices do not always coincide with the
set of maximal elements from a single preference relation. Moreover, the outcome
of the joint decision will largely depend on the underlying decision process. One of
the most straightforward extensions of individual rationality to a multi-person setting
is rendered by the notion of Pareto optimality. Pareto optimality requires that if an
alternative is chosen then there is no other feasible alternative that was preferred to
this chosen alternative by all individuals (We take a preference relation to be asym-
metric, transitive and complete. As such, an alternative is Pareto optimal if it is not
unanimously dominated by another feasible alternative.)

The principle of Pareto optimality is one of the cornerstones of normative economic
analysis and it is beyond any doubt the most frequently used concept in welfare eco-
nomics and cooperative game theory. Apart from this normative perspective Pareto
optimality is also frequently used to explain actual cooperative behavior (e.g. models
of household behavior, firm-union wage negotiations, job-matching and job-search
models, international trade negotiation models and models of cartel formation in
oligopolistic competition). Nevertheless, despite its wide prevalence as a normative
and behavioral principle there are relatively few researches that look at its testable
implications.

In this research we look at the computational complexity of verifying whether
a given choice function is consistent with Pareto efficient choice behavior from a
coalition of individuals. Towards this end we distinguish between two concepts.

The first concept, Pareto rationalizable, requires that there exist preference rela-
tions, one for each member in the coalition, such that the observed choices from a
choice set coincide with the entire set of Pareto optimal alternatives from this set. The
concept of Pareto rationalizability has previously been analyzed by Sprumont (2000)
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in the setting of a normal form game. More recently, Echenique and Ivanov (2011)
looked at Pareto rationalizability in a general 2 agent choice theoretic setting. Other
relevant research imposes more structure on the underlying framework. For exam-
ple, Bossert and Sprumont (2002) characterize consistency of a choice function with
Pareto efficiency (and individual rationality) in the setting of a two person exchange
economy.

Although Pareto rationalizability is a useful concept, it suffers from the fact that
it is difficult to apply in reality. Indeed, in most real life settings the choices from a
coalition do not coincide with the entire set of Pareto optimal allocations. For exam-
ple, if the coalition chooses by means of a bargaining model (e.g. Nash bargaining or
Raiffa–Kalai–Smorodinsky) then the observed outcome will be Pareto optimal but the
chosen alternative(s) will not necessarily coincide with the entire set of Pareto optimal
outcomes. In this perspective, we say that a choice function is weak Pareto rational-
izable if there exist individual preference relations such that the chosen elements are
a subset of the set of Pareto efficient alternatives. In other words, a choice function
is weak Pareto rationalizable if every chosen alternative is not Pareto dominated by
another feasible alternative. Although Weak Pareto rationalizability is the more rea-
sonable concept when faced with real life choice situations, this is, to our knowledge,
the first research that looks at this property in a general choice theoretic setting.1

In Sect. 3, we derive the computational complexity of Pareto and weak Pareto
rationalizability using a general choice theoretic setting. We show that Pareto ratio-
nalizability is NP-complete for all coalitions with at least two individuals. On the
other hand we show that, in general, the notion of weak Pareto rationalizability has no
testable constraints on observed choice behavior. In fact, it is quite trivial to show that
any choice function is weak Pareto rationalizable by a coalition with two individuals
(see Proposition 3.1). Although this result is well known2 it nevertheless emphasizes
that from an empirical viewpoint Pareto optimality is a very weak concept. In order
to restore empirical refutability we introduce the concept of a dominance relation.
Simply said, a dominance relation is a known subrelation of the Pareto dominance
relation: if an alternative a is better than the alternative b according to the dominance
relation we know that all individuals in the coalition prefer a over b. We provide sev-
eral settings where such a dominance relation appears naturally. Further, we show that
the inclusion of a dominance can lead to non-trivial restrictions on observed choice
behavior.3 Next, we demonstrate that the inclusion of such dominance relation implies
that the problem of weak Pareto rationalizability becomes NP-complete for coalitions
with at least two individuals.

The demonstration that there is no complexity gap between (weak) Pareto ratio-
nalizability by two individuals and (weak) Pareto rationalizability by more than two

1 On the other hand, there has been a growing stream of research that looks at the testable implications of
weak Pareto rationalizability in a household consumption setting with private and public goods (see, for
example, Apps and Rees 1988; Chiappori 1988, 1992 and Cherchye et al. 2007).
2 In fact, this result (and its proof) is very similar to the result of Sprumont (2000, Proposition 1) who
showed that weak Pareto rationalizability has no testable implications in the setting of a normal form game.
3 A trivial restriction would be, for example, that a cannot be chosen from {a, b} when b is better than a
according to the dominance relation.
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individuals is a key result of this paper. Indeed, many decision problems have such
a gap. For example, the recognition of 3-colorable graphs is NP-complete, while 2-
colorable graphs can be recognized in polynomial time. The same is true for 3-SAT
versus 2-SAT and 3-dimensional matching versus 2-dimensional matching.

By establishing the computational complexity of rationalizing (weakly) Pareto effi-
cient choice behavior we also contribute to the small but growing literature that estab-
lishes NP-completeness results for various economic problems. Particularly relevant
to our results is the line of research within this literature that looks at the compu-
tational complexity of various (individual or collective) rationalizability problems.
Galambos (2009) employs the setting of Sprumont (2000) and shows that the problem
of rationalizing a choice function as the outcome of a noncooperative Nash equilibrium
in a normal form game is an NP-complete problem. Next, Apesteguia and Ballester
(2010) consider the model of choice by multiple rationales from Kalai et al. (2002)
and demonstrate that computing the minimal number of rationales that rationalizes a
given choice function is an NP-complete problem. Demuynck (2011) establishes sim-
ilar NP-completeness results for the sequential choice model of Manzini and Mariotti
(2007) and the model of choice by game trees from Xu and Zhou (2007).

Finally, Talla Nobibon and Spieksma (2010) find that verifying the revealed pref-
erence conditions for weak Pareto rationalizable choice behavior for a two person
coalition as derived by Cherchye et al. (2007) is an NP-complete problem. This set-
ting differs from ours in the sense that these conditions are obtained from a revealed
preference analysis a là Afriat (1967) and Varian (1982) (i.e. in a household con-
sumption setting). On the other hand, our paper focuses on the more general choice
theoretic setting. Also, while we introduce a dominance relation in order to obtain
testable implications, the revealed preference setting obtains its testable implications
from the fact that utility is strict monotonic. Rather interestingly, Talla Nobibon and
Spieksma (2010) use a reduction from the NP-complete problem not all equal 3-SAT
while we use a reduction from its monotone variant. Apart from this similarity, how-
ever, the proofs of the two results are rather different.

Section 2 provides a short introduction into the theory of computational complexity.
The readers who are familiar with this theory may safely skip this section. Section 3
introduces the main notation and establishes the computational complexity results for
Pareto and weak Pareto rationalizability. Section 4 provides the proofs.

2 NP-completeness

This section provides a short introduction to the theory of computational complexity.
For the readers who are familiar with the notion of NP-completeness this section may
be skipped. For compactness, we only provide a very quick introduction alas at the
cost of completeness. For a detailed introduction into the theory of computational
complexity and NP-completeness in particular we refer to Papadimitriou (1994) and
Garey and Johnson (1979).

The theory of computational complexity attempts to answer how much time (and
memory) is needed to solve a decision problem. A decision problem is composed of
a collection of instances which are the input to the problem and a Yes/No question.
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The collection of instances I give the inputs of the decision problem. Normally,
it is assumed that these instances are encoded in some convenient way. This is done
by using a suitable set of symbols � (e.g. � = {0, 1}) and by defining I as a subset
of all finite strings of symbols from �, i.e. I ⊆ ⋃∞

n=1 �n . For a particular instance
I ∈ I we call the smallest n such that I ∈ �n the length or size of I . In general,
the particular encoding of the instances are not really important and does not really
change the results as long as they are ‘reasonable’. Formally, encoding schemes are
said to be ‘reasonable’ if they are (i) concise, i.e. they are not ‘padded’ with unnec-
essary information or symbols, (iii) the symbols occurring in the encoding are in a
fixed base (other than 1) and (ii) the encoding should be decodable in polynomial
time.

The Yes/No question of a decision problem maps each instance I ∈ I to a Yes
or a No depending on whether the particular instance I satisfies a certain property.
Formally, one could think of the Yes/No question as a function f from the set of all
instances I to the binary set {0, 1}. Then, we say that an instance satisfies the particular
property or is a Yes instance if f (I ) = 1, and it does not satisfy the property and is a
No instance when f (I ) = 0.

The theory of computational complexity classifies decision problems according to
the time it takes to compute the value of f (I ) given the instance I . Here, time is
expressed with respect to the size of the instance. The two most important classes
of decision problems are the classes P and NP. The class P (polynomial) contains all
decision problems which are easy to solve. These problems can be solved using an
algorithm that computes the solution in a polynomial number of steps in terms of the
size of the instance. The class NP (nondeterministic polynomial) contains all problems
that might be difficult to solve (i.e. it might take exponential time) but which are easy
to verify. In particular, any solution to the problem can be verified in polynomial
time.4

Of course, any decision problem in the class P is also in NP. At present, it is not
known if the converse also holds. The general accepted belief is that P �= NP. A
decision problem which is as least as difficult to solve as any problem in the class
NP is called NP-hard. A decision problem is NP-complete if it is both NP-hard and
in NP. NP-complete problems are among the most difficult problems in the class NP.
They are considered to be computationally intractable especially for large instances.
In fact, all known solution methods applicable to NP-complete problems suffer from
exponential worst-time complexity.

In order to understand the proofs in Sect. 4, it might be interesting to have a quick
overview of how NP-completeness results are established. In principle, for a candidate
decision problem to be NP-complete it suffices to demonstrate two things. First, one
must demonstrate that the problem is in the class NP. In other words, it must be shown
that given a proposed polynomial sized solution to the problem it can be efficiently
verified (i.e. in polynomial time) that this proposed solution is indeed a solution.

4 The exact way by which this is defined is that there exists a polynomial time algorithm (function) g
and for each instance I for which f (I ) = 1, there exists a certificate C(I ) of polynomial size such that
g(C(I ), I ) = 1 and for all instances I for which f (I ) = 0 and all certificates C it is always the case that
g(C, I ) = 0.
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Second, it must be shown that the NP-complete problem is at least as hard as any other
problem in NP (i.e. the problem is NP-hard). The way by which this is established
is by taking a known NP-hard problem and showing that this problem is a special
case of the candidate problem. As such, the candidate problem will be at least as
difficult as the NP-hard problem. This demonstrates that the candidate problem is also
NP-hard. Usually, this second step is proved by the technique of polynomial reduction.
Let the known NP-complete problem be represented by a collection of instances I
and the function f : I → {0, 1} and let the candidate problem be represented by
the collection of instances I ′ and the function g : I ′ → {0, 1}. In order to show that
(g, I ′) is NP-hard it suffices to demonstrate that there exists a function γ from I to
I ′ such that (i) γ is computable in polynomial time and (ii) an instance I ∈ I of the
NP-complete problem provides a solution to this problem (i.e. f (I ) = 1) if and only
if the instance γ (I ) provides a solution to the candidate problem (i.e. g(γ (I )) = 1).
The idea behind this construction is that any algorithm that efficiently computes the
function g can also be used to efficiently compute the function f by means of the
intermediate function γ (i.e. in order to know the value of f (I ) it is always possible
to compute g(γ (I ))). In this sense, the problem ( f, I) is at least as easy to solve as
the problem (g, I ′).

3 Pareto and weakly Pareto rationalizability

In this section we establish the computational complexity of Pareto and weak Pareto
rationalizability. We start with introducing the necessary notation and definitions.
Next, we present the relevant decision problems. We end the section by stating our
complexity results.

3.1 Notation and definitions

Consider a finite set of alternatives X and a finite collection D of nonempty subsets
of X . We call D the domain of the decision problem. A choice function c corresponds
to each choice set A from D a nonempty set c(A) ⊆ A.

A binary relation � on X is transitive if for all a, b and c ∈ X, a � b and b � c
implies a � c. The relation is complete or total if for every two distinct elements a
and b ∈ X either a � b or b � a. The relation � is asymmetric if for all distinct a
and b ∈ X not (a � b and b � a). A partial order is a transitive and asymmetric
relation. A linear order or preference relation is a transitive, asymmetric and complete
relation.5

Given a relation � on X and a subset A from X we denote by M(�, A) the set of
maximal elements of A according to the relation �. Formally,

M(�, A) = {a ∈ A|∀b ∈ A, b �� a}.

5 Sometimes, partial and linear orders are also referred to as strict partial and strict linear orders, in order
to make a distinction between the non-asymmetric variants. In this paper we use ‘partial order’ and ‘linear
order’ as referring to the strict varieties.
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For a strictly positive number K ∈ N and a profile (list) of preference relations
{�k}k≤K we say that � is the Pareto dominance relation of {�k}k≤K if for all a, b ∈ X ,

a � b if and only if a �k b for all k ≤ K .

Equivalently, we can write:

�=
⋂

k≤K

�k .

A Pareto dominance relation is always a partial order. On the other hand, Dushnik
and Miller (1941) proved that for any partial order � there exists a number K and a
profile {�k}k≤K for which � is the corresponding Pareto dominance relation. As such,
any partial order is the Pareto dominance relation for some coalition. They defined
the dimension of a partial order as the smallest number of linear orders whose Pareto
dominance relation coincides with this partial order. Formally, a partial order � has
dimension less or equal than K if there exists a profile {�k}k≤K of K preference
relations such that � is the corresponding Pareto dominance relation. In the same
article, Dushnik and Miller also provide two characterizations for a partial order to
have a dimension smaller than or equal to 2.6

Let us now turn to the definitions of Pareto and weak Pareto rationalizability. We
define a choice function to be Pareto rationalized by a given profile of preference
relations if the choices from each choice set coincide with the set of all Pareto efficient
alternatives from this profile.

Definition 1 (Pareto rationalizability) A choice function c is Pareto rationalized by
the profile of preference relations {�k}k≤K iff for all A ∈ D,

c(A) = M(�, A),

where � is the Pareto dominance relation of {�k}k≤K .

As mentioned in the introduction, the notion of Pareto rationalizability is probably
too restrictive from an empirical point of view. It is difficult to imagine a real life
example where a group of individual selects all Pareto optimal alternatives from a
choice set. A more reasonable assumption is that a chosen alternative is not Pareto
dominated by another available alternative, i.e. the chosen alternatives are a subset
of the set of Pareto optimal allocations. We call a choice function that satisfies this
condition weak Pareto rationalizable.

Definition 2 The choice function c on a domain D is weak Pareto rationalized by the
profile of preference relations {�k}k≤K iff for all A ∈ D.

c(A) ⊆ M(�, A),

6 See also Sprumont (2001) for a different but simpler characterization for a partial order to be of dimension
2, provided some regularity conditions are satisfied.

123



www.manaraa.com

536 T. Demuynck

where � is the Pareto dominance relation for the profile {�k}k≤K .

Consider a choice function c which is Pareto rationalizable and let �R be defined
by a �R b iff there is a set A ∈ D such that {a} = c(A) and b ∈ A. From the definition
of Pareto rationalizability, we immediately see that �R is a subrelation of the Pareto
dominance relation � (i.e. �R ⊆�). As such, �R should be acyclic. This shows that
the concept of Pareto rationalizability has some testable implications (i.e. it can be
rejected). On the other hand, the following result shows that this is not true for the
concept of weak Pareto rationalizability.

Proposition For any choice function c, there exist a profile of preference relations
{�1,�2} that weakly Pareto rationalizes c.

By replicating the preferences �1 and �2, this result extends to coalitions with more
than two individuals.

The proof of the proposition is quite trivial. Consider an arbitrary ranking of the
alternatives in X which we represent by the preference relation �1. Next, for all a
and b ∈ X define a �2 b if and only if b �1 a. The preference relation �2 is the
inverse relation of �1. It follows that the Pareto dominance relation is empty. This in
turn implies that for any choice set A ∈ D, the set of Pareto optimal elements from A
is the set A itself, M(�, A) = A.

Above proposition shows that we need to include additional information in order
to reject the notion of weak Pareto rationalizability. We proceed by introducing the
concept of a dominance relation as a subrelation of the Pareto dominance relation.
Consider a preference profile {�k}k≤K with a Pareto dominance relation �. A binary
relation � is a dominance relation of the preference profile if � ⊆�. In other words,
for all a, b ∈ X , if a � b, then a �k b for all k ≤ K . In order to motivate the idea
of a dominance relation we provide several examples where such relation appears
naturally.

Example 1 Consider the setting where X is a finite set of bundles of public goods.
Then, we could impose a � b if and only if a > b. If the bundle a has at least as
much of every good as the bundle b and if a �= b then a is considered better than b
for all individuals in the coalition. This will be the case if individual preferences are
monotone.

Example 2 Consider a finite set of outcomes O and let X be a finite subset of the
power set of O . Every alternative in X consists of a finite number of outcomes. If all
outcomes are desirable we can assume that a � b whenever b ⊂ a, i.e. if all outcomes
in b are also contained in a and a contains some outcomes which are not in b then a
is better than b for all individuals.

Example 3 As a final example, consider the setting where X is a finite set of income
distributions. The individuals in the coalition can be thought of as a group of govern-
ment representatives who must decide on the most favorable income distribution (for
example, by implementing a certain tax policy). In this setting it is logical to assume
that a � b if the distribution a first order stochastically dominates the distribution b.
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Fig. 1 Illustration of �

The following definition combines the notion of weakly Pareto rationalizability
with the idea of a dominance relation.

Definition 3 The profile {�k}k≤K weakly Pareto rationalizes the choice function c
with the dominance relation � if there exists a profile of preferences {�k}k≤K such
that for all A ∈ D,

c(A) ⊆ M(�, A),

where � is the Pareto dominance relation for the profile {�k}k≤K and for all a, b ∈
X, a � b implies that a �k b for all k ≤ K (i.e. � ⊆�).

The inclusion of a dominance relation into the definition of weakly Pareto ratio-
nalizability immediately imposes some restrictions on the joint choice behavior. For
example, if a � b then it should not be the case that b ∈ c(A) while a ∈ A. If b was
chosen over a then at least one individual should prefer b over a. As such, we see that
not every choice function will be weakly Pareto rationalizable. However, above exam-
ple is a rather trivial restriction which has no bite if the domain contains only choice
sets with alternatives that are incomparable according to the dominance relation �.

As an example of a less trivial restriction, consider the set of alternatives X =
{a1, a2, b1, b2, d1, d2}. Define the dominance relation � by the comparisons a2 �
b1, a2 � d1, b2 � a1, b2 � d1, d2 � a1 and d2 � b1. See Fig. 1 for an illustration
of the relation �. The domain D consists of the sets {a1, a2}, {b1, b2} and {d1, d2}.
Observe that none of the choice sets contains elements that are comparable according
to �. The choice function is given by c({a1, a2}) = {a1}, c({b1, b2}) = {b1} and
c({d1, d2}) = {d1}. If {�1,�2} weakly Pareto rationalizes this choice function it is
necessary that the following three conditions are satisfied.

(a1 �1 b1 and a1 �1 d1) or (a1 �2 b1 and a1 �2 d1)

(b1 �1 a1 and b1 �1 d1) or (b1 �2 a1 and b1 �2 d1)

(d1 �1 b1 and d1 �1 a1) or (d1 �2 b1 and d1 �2 a1)

It is easy to see that these three conditions are incompatible. Therefore, the choice
function is not weakly Pareto rationalizable by two preference relations.

Above example already gives us a hint why the problem of weak Pareto rational-
izability with a dominance relation might be a difficult problem. Observe that the
(necessary) conditions for weak Pareto rationalizability in the example are given in
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terms of three exclusive or conditions that have to be jointly satisfied. This gives us a
total of 23 = 8 combinations that have to be verified in total. Given the limited size of
the problem this can still be done quite rapidly for the setting at hand. However, it is
easy too see that the number of combinations increases exponentially in the number of
or conditions. This indicates that the verification may become increasingly difficult
even for moderately sized problems.

3.2 The decision problems

Let us now turn to the presentation of the decision problems. We begin by presenting
the decision problem corresponding to the notion of weak Pareto rationalizability.

K-weak Pareto rationalizability (K-WPRAT) Given a set of alternatives X , a
domain D, a choice function c on D and a partial order � on X , does there exist
a profile of preference relations {�k}k≤K such that this profile provides a weak Pareto
rationalization of the choice function c and such that for all a, b ∈ X, a � b implies
that a �k b for all k ≤ K ?

In terms of the formulation in Sect. 2, we have that each instance I of the decision
problem K-WPRAT is determined by a quadruple (X,D, c,�) which contains a set
of alternatives, a domain, a choice function on this domain and dominance relation.
The function f that determines the decision problem K-WPRAT maps an instance
(X,D, c,�) to 1 if and only if it is weakly Pareto rationalizable by a profile of K
preference relations that satisfy the dominance relation �.

Let us denote by n the size of the set X and by m the size of the domain D. Any
instance (X,D, c,�) of K-WPRAT can be encoded by first enumerating every set A
in D, subsequently enumerating the chosen elements from these sets, i.e. c(A) and
subsequently enumerating the elements of �. We can do this using 2 m n + n2 bits.7

As such, if we set k = max{n, m}, then the size of the instance is O(k2).
Let us now turn to the decision problem corresponding to the notion of Pareto

rationalizability.

K-Pareto rationalizability (K-PRAT) Given a finite universal set X , a domain D
and a choice function c, does there exist a profile of K preference relations {�k}k≤K

that Pareto rationalizes the choice function c?
Instances of K-PRAT are determined by a triple (X,D, c) and the function f that

determines this decision problem maps any instance (X,D, c) to 1 if and only if the
instance is Pareto rationalizable by profile of K preference relations. Similarly as for
the problem K-WPRAT, we can show that an instance of K-WPRAT can be encoded
in O(k2) bits.

Observe that the problem K-PRAT does not depend on a dominance relation. To
ameliorate this, we could also consider the following variation of K-PRAT.

7 Given the elements x1, . . . , xn of X , every set A ∈ D and c(A) can be encoded by an n dimensional
array which has a one in position i if ai ∈ A (or c(A)) and a zero in position i if ai /∈ A (or c(A)). Next,
� can be encoded as a matrix B of n2 bits where entry bi, j is equal to 1 if and only if ai � a j . As such,

every instance of K-WPRAT can be encoded using a total of 2mn + n2 bits.
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K-Pareto rationalizability-2 (K-PRAT-2) Given a finite universal set X , a domain
D, a choice function c and a partial order �, does there exist a profile of K preference
relations {�k}k≤K that Pareto rationalizes the choice function c and such that for all
a, b ∈ X, a � b implies that a �k b for all k ≤ K ?

The problem K-PRAT corresponds to the special case where � = ∅. As such
K-PRAT is more restrictive than the problem K-PRAT-2. As a consequence, NP-
completeness of K-PRAT will also imply that K-PRAT-2 is NP-completene (although
the reverse need not hold). This is the reason why we focus on the more restrictive
problem K-PRAT.

Finally, in both problems K-PRAT and K-WPRAT, the size of the coalition K is
a parameter of the decision problem. As such, we actually obtain an infinite number
of decision problems, one for each value of K ∈ N. This setting is more restrictive
than when we would take the number of individuals in the coalition K as an additional
parameter of the instance. For example, we could define the following problems, PRAT
and WPRAT.

Pareto rationalizability (PRAT) Given a universal set X , a domain D, a choice
function c and a number K , does there exist a profile of K preference relations {�k}k≤K

that Pareto rationalizes the choice function c?

Weak Pareto rationalizability (WPRAT) Given a universal set X , a domain D, a
choice function c, a dominance relation � and a number K , does there exist a profile
of K preference relations {�k}k≤K that weakly Pareto rationalizes the choice function
c and for which � ⊆�k (k ≤ K )?

Observe that the instances of the problem PRAT consists of quadruples (X,D, c, K )

and instances of WPRAT are of the form (X,D, c,�, K ). Hence, for these problems,
the number of individuals K in the coalition is a part of the input to the problem. The
problem PRAT and WPRAT are NP-complete as soon as there exists at least one value
of K for which K-PRAT and K-WPRAT is NP-complete. However, the converse does
not necessarily hold, i.e. it is possible that PRAT or WPRAT are NP-complete while
K-PRAT or K-WPRAT are in P for some value of K. For example, this is obviously
the case when K = 1.

3.3 Main results

We derive the computational complexity of K-PRAT and K-WPRAT (for K ≥ 2) in
two steps. First we focus on the case where the size of the coalition, K, is greater or
equal to three. Subsequently, we take on the setting where the coalition has size two.
Consider the decision problem of establishing the dimension of a partial order.

K-dimension (K-Dim) Given a partial order � on a set X , is this relation of dimension
K or less?

Yannakakis (1982) proved that the decision problem K-Dim is NP-complete for all
K ≥ 3. On the other hand, it is known that K-Dim is efficiently solvable, i.e. in the
class P, if K is less than or equal to two. We refer to Spinrad (1994) for an overview
of the different algorithms that can be applied in this case.
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Using the result of Yannakakis (1982) we can show that K-PRAT and K-WPRAT
are NP-complete for all K ≥ 3. The proof uses a reduction from the NP-compete
problem K-Dim.

Corollary The decision problems K-PRAT and K-WPRAT are NP-complete for all
K ≥ 3.

The proof is quite easy, so we state it here. For K-PRAT we construct from the partial
order �, an instance (X,D, c) for which the Pareto dominance relations coincides with
�. For this, it suffices to consider the instance where the domain D coincides with
all two element subsets from X . Then, if a � b we determine c({a, b}) = {a} and if
a �� b and b �� a we set c({a, b}) = {a, b}. As such, we have that the partial relation
� has dimension less than or equal to K if and only if the corresponding instance
(X,D, c) is rationalizable by a profile of no more than K preference relations. This
shows that K-PRAT is at least as difficult to solve as K-Dim. The NP-completeness
of K-PRAT for K ≥ 3 then follows immediately from the NP-completeness of K-Dim
for K ≥ 3.

For K-WPRAT we construct an instance, (X ′,D, c,�) from the instance (X,�)

of K-Dim in the following way. The set of alternatives X ′ is defined by X ∪ {d}
with d a new alternative not in X . Next, we set � =� and we consider the domain
D = {{a, b}, {a, b, d}|¬(a � b) and ¬(b � a)}. We define the choice function by
c({a, b, d}) = {a} and c({a, b}) = {b}. It is easy to see that the dimension of � is
equal to K if and only if the choice function is weakly Pareto rationalizable by a profile
of K preferences. This shows that K-WPRAT is NP-complete.

When K = 2, above reductions from K-Dim can no longer be used to prove NP-
completeness because we have that 2-Dim is efficiently solvable. Rather surprisingly,
however, we find that both 2-PRAT and 2-WPRAT are also NP-complete. For 2-PRAT,
our proof relies on a reduction from the NP-complete problem 3-SAT. For 2-WPRAT,
we use a reduction from monotone not all equal 3-SAT. Although the proof of the latter
result considers the general case where the dominance relation � is some unrestricted
partial ordering, the proof can easily be adjusted such that the dominance relation
coincides with a more specific partial relation like in the examples given above. The
proof of the theorem is in the next section.

Theorem The decision problems 2-PRAT and 2-WPRAT are NP-complete.

We end this section with several remarks.
First of all, if the domain D is binary (i.e. if D contains all two element subsets of

X ), we can use the efficiency of 2-Dim to show that 2-PRAT is also efficiently solvable.
In order to do this, we devise an algorithm that verifies 2-PRAT in three steps. First
one constructs the partial order � such that a � b if and only if {a} = c({a, b}). This
relation is well defined because the domain D is binary. In a second step, it is verified
whether � is of dimension less than or equal to 2. Finally, it is verified that for all
A ∈ D, c(A) = M(�, A). It is easy to see that an instance satisfies 2-PRAT if and
only if it passes this algorithm. Also, all three steps in this algorithm can be verified
in polynomial time. Therefore, 2-PRAT is in P for all instances with a binary domain.

Although this shows that 2-PRAT is in P if the domain is binary, it is not known
whether this result is also valid for the problem 2-WPRAT. The difficulty lies in the
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fact that for 2-WPRAT it is not possible to recover the Pareto dominance relation from
the choices on all two element subsets.

Second, if we consider the case where the domain under consideration is complete,
i.e. D contains all nonempty subsets of X , it is possible to show that both the prob-
lems K-PRAT and K-WPRAT are quasi-polynomially bounded.8 Given this result, it
is highly unlikely that the problems K-PRAT or K-WPRAT are NP-complete when
restricted to universal domains. Otherwise, it would follow that all NP-complete prob-
lems are also quasi-polynomially bounded. However, such a bound has never been
found and there is a strong conviction that this will never happen.

On the other hand, notice that the complete domain assumption is quite restrictive
in the sense that the size of an instance is exponential in the size of the set X . For
example, if the universal set contains 10 alternatives, then the domain must contain
no less than 1.023 choice sets.

Finally, we end this section with an open problem. In our analysis, we departed
from the assumption that we know the size of the coalition. However, we could also
imagine a situation where we do not have this kind of information. In such a setting,
the problem of Pareto rationalizability can be rephrased in the following way:

Unrestricted Paretp rationalizability (∞-PRAT) Given a set of alternatives X, a
domain D and a choice function c on D does there exist a strictly positive number K
and a profile of preference relations {�k}k≤K such that this profile provides a Pareto
rationalization of the choice function c?

Using the result of Dushnik and Miller (1941) presented in 3.1, this problem can
be shown to be equivalent to the problem of maximal element rationalizability by a
partial order (see for example Bossert et al. 2005 and Bossert and Suzumura 2010). It
would be interesting to know whether this problem is also NP-complete.

4 Proof of the main theorem

We begin with the proof that 2-PRAT is NP-complete. Next, we show that 2-WPRAT
is NP-complete.

4.1 2-PRAT is NP-complete

Membership in NP is easily verified. For the second step of the proof we use a reduction
from the problem 3-SAT. An instance of 3-SAT consists of a finite set of binary
variables u1, . . . , un and a finite set of clauses C1, . . . , Cm . Each variable can either
take the value TRUE or FALSE. Every clause contains three literals and each literal
is either equal to a variable ui (i.e. the literal is TRUE if ui is TRUE and FALSE if ui

is FALSE) or its negation ūi (i.e. the literal is FALSE if ui is TRUE or the literal is
TRUE if ui is FALSE). The following defines the decision problem 3-SAT.

8 A proof of this can be constructed along the lines of the proof of Theorem 4 of Apesteguia and Ballester
(2010).
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Table 1 Choice sets and choice
function

Choice set, A Choice, c(A) Range

{a, b} {a, b} (1)
{d�, b} {d�} � = 1, . . . , m (2)
{d�, a} {d�, a} � = 1, . . . , m (3)
{yi , ȳi } {yi , ȳi } i = 1, . . . , n (4)
{wi , w̄i } {wi , w̄i } i = 1, . . . , n (5)
{ȳi , wi } {wi } i = 1, . . . , n (6)
{w̄i , yi } {yi } i = 1, . . . , n (7)
{d�, z̄k,�} {d�} � = 1, . . . , m; k = 1, 2, 3 (8)
{z1,�, z2,�, z3,�, a} {z1,�, z2,�, z3,�} � = 1, . . . , m (9)

3-Satisfiability (3-SAT) Given a finite set of variables u1, . . . , un and a finite set of
clauses C1, . . . , Cm , does there exist an assignment to the variables, either TRUE or
FALSE, such that each clause contains at least one literal with the value TRUE.

Let u1, . . . , un be a list of variables and let C1, . . . , Cm be a list of clauses corre-
sponding to an instance of 3-SAT. From these, we construct an instance of 2-PRAT: a
set of alternatives X , a domain D and a choice function c. We begin by defining the
set X .

• We construct two alternatives a and b.
• For each clause C� (� = 1, . . . , m) we construct an alternative d�.
• For each variable ui (i = 1, . . . , n) we construct four alternatives yi , ȳi , wi and

w̄i .

For each clause C� and each literal lk,� (k = 1, 2, 3; � = 1, . . . , m) from this clause
we consider the alternatives zk,� and z̄k,� in X such that if lk,� = ui then zk,� = yi

and z̄k,� = ȳi , and if lk,� = ūi then zk,� = wi and z̄k,� = w̄i . The construction of the
domain D and the value of the choice function c is given in Table 1. This construction
can be performed in polynomial time.

We begin by showing that, if this instance satisfies 2-PRAT, the corresponding
3-SAT problem has a solution. Consider a rationalization {�1,�2} of the instance
(X,D, c). First, consider the comparison between a and b. We can assume, without
loss of generality that a �1 b and b �2 a. Otherwise, we can exchange the preferences
�1 and �2 everywhere.

Now, consider the alternatives yi , ȳi , wi and w̄i whose comparisons are determined
by conditions (4)–(7) in Table 1. One can verify that comparisons between these
alternatives must take one of two mutually exclusive configurations. We determine the
values of the variables ui (i = 1, . . . , n) according to which configuration prevails.
The two configurations are given by Fig. 2 where a dashed arrow determines the
relation �1 and a solid arrow the relation �2. From the figure, we see that ui = TRUE
whenever yi �1 ȳi (and not wi �1 w̄i ) and ui = FALSE when wi �1 w̄i (and not
yi �1 ȳi ).

We see that for no variable ui (i = 1, . . . , n) we have that both ui = TRUE and ui =
FALSE. Now, consider the choice set {z1,�, z2,�, z3,�, a}, with choices {z1,�, z2,�, z3,�}
(see condition (9) in Table 1). As the instance satisfies 2-PRAT, we see that there
must be at least one alternative in the set {z1,�, z2,�, z3,�} that Pareto dominates a
(because, a is not retained). Let zk,� be this alternative. We will show that the literal
lk,� equals TRUE.
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Fig. 2 Value of the variable ui

Fig. 3 Demonstration that zk,�

equals one

The reasoning is illustrated in Fig. 3. First of all from d� �2 b [(comparison (2)] and
b �2 a we see that d� �2 a. As such, a �1 d� (follows from transitivity and (3)). Then
from zk,� �1 a �1 d� �1 z̄k,� we have that zk,� �1 z̄k,� (this follows from transitivity
and (8)). As such, if zk,� = yi then yi �1 ȳi and consequently ui = TRUE, and if
zk,� = wi then wi �1 w̄i and ui = FALSE. In both cases, we have that the literal lk,�

is TRUE.
Let us now assume that 3-SAT is satisfied. We need to show that the instance

of 2-PRAT is a Yes-instance. In other words, we need to show the existence of two
preferences that provide a Pareto rationalization. We do this by constructing two acyclic
relations �1 and �2 that Pareto rationalize every choice set. These relations can always
be extended to complete, transitive and asymmetric relations (by using, for example, a
finite analogue of Szpilrajn 1930’s Lemma). Table 2 provides a first set of comparisons
conditional on the values of ui (i = 1, . . . , n).

Table 3 provides a second set of comparisons conditional on the values of two
variables ui and u j (1 ≤ i < j ≤ n). It is an easy but cumbersome exercise to verify
that these relations rationalize the choice function. Let us now demonstrate that they
are acyclic. We focus on the relation �1. The proof that �2 is also acyclic is very
similar and left to the reader.
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Table 2 First set of comparisons

ui = TRUE ui = FALSE Unconditional

yi �1 ȳi ȳi �2 yi ȳi �1 yi yi �2 ȳi a �1 b b �2 a
w̄i �1 wi wi �2 w̄i wi �1 w̄i w̄i �2 wi d� �1 b d� �2 b

a �1 d� d� �2 a
yi �1 a yi �2 a a �1 yi yi �2 a yi �1 w̄i yi �2 w̄i
a �1 wi wi �2 a wi �1 a wi �2 a wi �1 ȳi wi �2 ȳi

d� �1 z̄k,� d� �2 z̄k,�

Table 3 Second set of comparisons for i < j

ui = TRUE ui = FALSE
yi wi yi wi

u j = TRUE

y j yi �1 y j y j �1 wi y j �1 yi wi �1 y j
y j �2 yi wi �2 y j yi �2 y j y j �2 wi

w j yi �1 w j wi �1 w j yi �1 w j wi �1 w j
w j �2 yi w j �2 wi w j �2 yi w j �2 wi

u j = FALSE

y j yi �1 y j wi �1 y j yi �1 y j wi �1 y j
y j �2 yi y j �2 wi y j �2 yi y j �2 wi

w j yi �1 w j w j �1 wi w j �1 yi wi �1 w j
w j �2 yi wi �2 w j yi �2 w j w j �2 wi

For a contradiction, assume that �1 contains a cycle. We proceed by sequentially
excluding elements from this cycle.

Fact 1 For all i = 1, . . . , n,

• if ui = FALSE, then w̄i is not in the cycle of �1.
• if ui = TRUE, then ȳi is not in the cycle of �1.

This follows from the observation that there is no alternative that is dominated by w̄i

(for ui = FALSE) or ȳi (for ui = TRUE).

Fact 2 For all i = 1, . . . , n,

• if ui = FALSE, then yi is not in the cycle of �1.
• if ui = TRUE, then wi is not in the cycle of �1.

The proof is by (reverse) induction on i , i.e. starting from i = n. Assume that yn (with
un = FALSE) or wn (with un = TRUE) is in the cycle. The next element in the cycle
is then given by w̄n (if un = FALSE) or ȳn (if un = TRUE). However, this contradicts
the previous fact.

Now, assume that the fact holds for all i with i ≥ t . Then let us look at the
case where i = t − 1. If ui = FALSE then the alternative following yi is either w̄i

(according to Table 2), w j with j > i and u j = TRUE, or y j with j > i and u j =
FALSE (according to Table 3). All these cases either contradict the previous fact or
the induction hypothesis. This shows that yi is not in the cycle if ui = FALSE.
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On the other hand, if ui = TRUE then the alternative following wi is either ȳi

(according to Table 2), w j (with j > i and u j = TRUE), or y j (with j > i and ui =
FALSE) (according to Table 3). These cases either contradict the previous fact or the
induction hypothesis. This shows that wi is not in the cycle if ui = TRUE.

The proof is completed by induction.

Fact 3 For all i = 1, . . . , n,

• b is not in the cycle of �1.
• If ui = TRUE, then w̄i is not in the cycle of �1.
• If ui = FALSE, then ȳi is not in the cycle of �1.
• d� (� = 1, . . . , m) is not in the cycle of �1
• a is not in the cycle of �1.

We will proof each of the items separately:

• The alternative b dominates no other element according to �1, hence it must be a
terminal node. As such, it cannot be part of a cycle.

• If ui = TRUE and the cycle contains w̄i , then the next element in the cycle must
be wi . However, this contradicts Fact 2.

• If ui = FALSE and the cycle contains ȳi then the next element in the cycle must
be yi which contradicts Fact 2.

• If the cycle contains d� then the following alternative in the cycle must be either
w̄i or ȳi (see Table 2). However, this either contradicts the previous finding or
Fact 1.

• If the cycle contains a then the following element in the cycle is either b, d�

(� = 1, . . . , m) , wi (with ui = TRUE) or yi (with ui = FALSE). All these cases
contradict previous findings.

Fact 4 For all i = 1, . . . , n,

• if ui = TRUE, then yi is not in a cycle of �1.
• if ui = FALSE, then wi is not in a cycle of �1.

The proof is again by reverse induction on i starting with i = n. If yn with un =
TRUE or wn with un = FALSE is in a cycle of �1 then the next element in the cycle
is either ȳn, w̄n, a or w j (with u j = TRUE), neither of which can be part of the cycle
given previous facts.

For the induction hypothesis, assume that the fact holds for all i ≥ t and take the
case where i = t −1. Then if ui = TRUE and yi is in the cycle then the next element in
the cycle is either ȳi , a, w̄i (according to Table 2), y j (with u j = TRUE and j > i),
w j (with u j = FALSE and j > i), w j (with u j = TRUE), or y j (with u j = FALSE)
(according to Table 3). All these cases are either excluded by previous facts or by the
induction hypothesis.

Next assume that ui = FALSE and that wi is in the cycle. Then the next element in
the cycle is either w̄i , a, ȳi (according to Table 2), w j (with u j = FALSE and j > i),
y j (with u j = TRUE and j > i), w j (with u j = TRUE), or y j (with u j = FALSE)
(according to Table 3). Again, all these cases are either excluded by previous facts or
by the induction hypothesis.
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Table 4 Construction of choice
sets and choice function

Choice sets Choices Range

{ai , āi } {ai } i = 1, . . . , n (1)
{ai , d, āi } {āi } i = 1, . . . , n (2)
{zk,�, tk,�} {zk,�} � = 1, . . . , m; k = 1, 2, 3 (3)
{zk,�, d, tk,�} {tk,�} � = 1, . . . , m; k = 1, 2, 3 (4)

The proof is completed by induction.
We have shown that no element can be part of the cycle of �1. From this, it follows

that �1 is acyclic, which concludes the proof.

4.2 2-WPRAT is NP-complete

First of all, notice that 2-WPRAT is in NP. The proof uses a reduction from the NP-
complete problem Monotone Not All Equal 3-SAT (M-NAE-3SAT).9

An instance of M-NAE-3-SAT consists of a set of binary variables u1, . . . , un and
a finite list of clauses C1, . . . , Cm . Each clause contains three variables.

Monotone Not All Equal 3-SAT (M-NAE-3-SAT) Does there exist an assignment
to the variables (either TRUE or FALSE) such that each clause contains at least one
TRUE variable and at least one FALSE variable?

Consider an instance of Monotone Not All Equal 3-SAT, i.e. a set of variables
u1, . . . , un and a set of clauses C1, . . . , Cm . We first construct the instance (X,D, c,�)

of 2-WPRAT. We begin with the definition of the set X .

• For each variable ui we construct two alternatives ai and āi .
• For each clause C�, we construct 12 alternatives: z1,�, z2,�, z3,�, t1,�, t2,�, t3,�, v1,�,

v2,�, v3,� and w1,�, w2,�, w3,�.
• We construct an additional alternative d.

The domain D and the choice function is given in Table 4. This construction can
be performed in polynomial time.

We define two functions f (k, �) and f̄ (k, �) (k = 1, 2, 3; � = 1, . . . , m). If the
kth variable in the �th clause is equal to the variable ui then we set f (k, �) = ai and
f̄ (k, �) = āi . Further, we denote by k ⊕ 1 the number (k + 1) mod 3.

Next, we construct the dominance relation � as in Table 5. The structure of the
relation � is illustrated in Fig. 4.

Let us first show that a solution to the weakly Pareto rationalization problem leads
to a solution of M-NAE-3SAT. First of all, we see that the two individuals must
differ on their preference of ai over āi (from (1) and (2)). Now, if ai �1 āi (and
āi �2 ai ) we set ui = TRUE and if ai �2 āi (and āi �1 ai ) we set ui = FALSE.
Let us show that this provides a solution to M-NAE-3SAT. First we demonstrate that
if f (k, �) = ai and ui = TRUE then zk,� �1 tk,�. Otherwise we would have that

9 Monotone-not-all-equal-3SAT can be obtained from the NP-complete problem Not-all-equal-3SAT
(Garey and Johnson 1979) by replacing all literals of the form ūi by a variable ri and adding an addi-
tional clause of the form {ri , ui , ui }.
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Table 5 Construction of
relation � Comparisons Range

tk,� � vk,� � = 1, . . . , m; k = 1, 2, 3
tk,� �wk,� � = 1, . . . , m; k = 1, 2, 3
wk,� � zk⊕1,� � = 1, . . . , m; k = 1, 2, 3
vk,� � f̄ (k, �) � = 1, . . . , m; k = 1, 2, 3
f (k, �) � zk,� � = 1, . . . , m; k = 1, 2, 3

Fig. 4 Dominace relation � for clause {u1, u2, u3}

āi �2 ai �2 zk,� �2 tk,� �2 vk,� �2 āi which is a contradiction. Similarly, we can
show that if f (k, �) = ai and ui = FALSE then zk,� �2 tk,�.

Now assume, towards a contradiction, that M-NAE-3SAT is not satisfiable. Then
there must be a clause C� where each variable is either TRUE or FALSE. If all variables
are FALSE then zk,� �1 tk,� for all k = 1, 2, 3. This produces the cycle z1,� �1 t1,� �1
w1,� �1 z2,� �1 t2,� �1 w2,� �1 z3,� �1 t3,� �1 w3,� �1 z1,�. The case where all
variables are equal to TRUE gives an identical cycle for the relation �2. This shows
that M-NAE-3SAT has a solution.

To see the converse, assume that M-NAE-3SAT has a solution. We need to show
that the choice function is weakly Pareto rationalizable. If ui = TRUE we set ai �1 āi

and āi �2 ai . Otherwise, if ui = FALSE we set ai �2 āi and āi �1 ai . If ui = TRUE
and f (k, �) = ai then we set zk,� �1 tk,� and tk,� �2 zk,�. Otherwise, if f (k, �) = ai

and ui = FALSE we set zk,� �2 tk,� and tk,� �1 zk,�. Further, we include into �1 and
�2 all the comparisons of �. Finally, let d be bottom ranked for both the relations �1
and �2.
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Observe that these preferences rationalize the choice function. We still need to show
that they can be extended to complete and transitive relations. For this it suffices to
show that �1 and �2 are acyclic. Here, we focus on the relation �1. The proof that
�2 is acyclic is very similar.

Assume, on the contrary that �1 contains a cycle. We proceed by sequentially
excluding all elements from this cycle.

Fact 5 āi is not in the cycle.

If it is, then the next element in the cycle can only be ai . This implies that ui = FALSE.
The third element in the cycle is an alternative zk,� with f (k, �) = ai . Finally, the fourth
element in the cycle then equals tk,�. This implies that ui = TRUE, a contradiction.

Fact 6 vk,� (k = 1, 2, 3; � = 1, . . . , m) is not in the cycle.

If it is then the next element in the cycle must be āi (with f (k, �) = ai ). This contradicts
the previous fact.

Fact 7 zk,� (k = 1, 2, 3; � = 1, . . . , m) is not in the cycle.

If it is then from the previous facts we must have that this cycle coincides with z1,� �1
t1,� �1 w1,� �1 z2,� �1 t2,� �1 w2,� �1 z3,� �1 t3,� �1 w3,� �1 z1,�. This implies
that all literals in the clause C� are true, which is a contradiction.

Fact 8 ai is not in the cycle.

If it is then the next element in the cycle is either āi or zk,l (with f (k, l) = ai ), both
of which are ruled out by previous facts.

Observe that we can also exclude all alternatives wk,� (because the next element is
zk⊕1,�) and tk,� (because the next element is either wk,�, vk,� or zk,�) from the cycle. As
such, we have shown that the cycle in �1 contains no elements, hence, �1 is acyclic.
This concludes the proof.
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